Polytec EP 655-T

Properties

Polytec EP 655-T is a 100% solid, two-component, non-flowing, highly thixotropic, tough-elastic modified, high-temperature-, moisture- and chemical-resistant epoxy adhesive.

The material is certified to USP Class VI Biocompatibility Standards. It was designed for medical, semiconductor,-hybrid, piezo and fiber optic applications.

It has an excellent adhesion to glass, metal, ceramics, ferrite and most plastics. Recommended as adhesive and encapsulation. Its tough-elastic properties allow assembly of substrates with dissimilar coefficients of thermal expansion.

Polytec EP 655 has passed > 100 autoclave steam cycles.

Processing

- For two-component products the components A and B should be mixed carefully within the specified mixing ratio.
- For filled products both components should be homogenized carefully prior mixing, in order to prevent a possible settling of the filler.
- Processing should be carried out rapidly after mixing the components; as an indication the pot life can be used.
- Surfaces should be clean, thus free of dirt, grease, oil, dust or process chemicals.
- One-component products can be applied directly and are not subject to a pot life (except pre-mixed/frozen products).
- Please take notice of respective minimum curing temperature and time.
- For Safety information please refer to the respective Material Safety Data Sheet.

Polytec EP 655-T
Unfilled Epoxy Adhesive
Technical Data

Polytec EP 655-T

Properties in uncured state	Method	Unit	Technical Data
Chemical basis	-	-	Ероху
No. of components	-	-	2
Mixing ratio (weight)	-	-	100:10
Mixing ratio (volume)	-	-	-
Pot life at 23°C	TM 702	h	24
Storage Stability at 23°C	TM 701	Months	12
Consistency	TM 101	-	Thixotropic
Density Mix	TM 201.2	g/cm³	1.19
Density A-Part	TM 201.2	g/cm³	1.21
Density B-Part	TM 201.2	g/cm³	1.07
Viscosity Mix 84 s ⁻¹ at 23°C	TM 202.1	mPa∙s	11 500
Viscosity A-Part 84 s ⁻¹ at 23°C	TM 202.1	mPa∙s	-
Viscosity B-Part 84 s ⁻¹ at 23°C	TM 202.1	mPa∙s	-

Properties in cured* state	Method	Unit	Technical Data
Color	TM 101	-	Yellow/ amber
Hardness (Shore D)	DIN EN ISO 868	-	85
Temperature resistance continuous	TM 302	°C	-55 / +220
Temperature resistance short term	TM 302	°C	-55 / +320
Degradation Temperature	TM 302	°C	+370
Glass Transition Temperature (Tg)	TM 501	°C	+105
Coefficient of thermal expansion (<tg)< td=""><td>ISO 11359-2</td><td>ppm</td><td>-</td></tg)<>	ISO 11359-2	ppm	-
Coefficient of thermal expansion (>Tg)	ISO 11359-2	ppm	F
Die Shear	-	N/mm²	>70
Elasticity modulus	TM 605	N/mm²	2 900
Tensile Strength	TM 605	N/mm²	55
Lap shear strength (AI/AI)	TM 604	N/mm²	16
Elongation at break	TM 605	%	2.8
Water absorption 24 h, 23°C	TM 301	%	0.24
Refractive index	-	-	-

^{*}The above data has been determined with samples cured at 150°C. Please notice, by varying the curing temperature these properties can be influenced to some extend.

Polytec EP 655-T

Curing*	Method	Unit	Technical Data
Minimum curing temperature		°C	80
Curing time at 23°C		h	-
Curing time at 80°C		min	90
Curing time at 100°C		min	30
Curing time at 120°C		min	15
Curing time at 150°C		min	5
Curing time at 180°C		S	-

^{*}Curing temperatures refer to the temperature in the respective bond line. When choosing the respective curing conditions, the time needed to heat the substrate has to be considered. Depending on the type of heat source (convection oven, hot stamp, heating plate) the heat input may vary. Since the chemical reaction of curing is an exothermic reaction, it should only be cured at higher temperatures in thin layers and only a few grams (<5 g). If you have any questions, please don't hesitate to ask your contact person.

Standard pack sizes:

250 g, 500 g

1 kg

Customized packaging

Please note:

The information listed above is typical data based on tests and is believed to be accurate. Polytec PT makes no warranties (expressed or implied) as to their accuracy. The data listed above does not constitute specifications. The processing (particularly the curing conditions) of the material, the process control, and the variety of different applications at various customers are not under Polytec PT's control. Therefore, Polytec PT will not be liable for concrete results in any specific application or in any connection with the use of this product. The curing conditions have a major effect on the properties of the cured material. Therefore, it is highly recommended to keep the curing schedule – once established - under tight control. With the release of this data sheet all former data sheets will be null and void.

Subject to alteration.

Polytec PT GmbH
Polymere Technologien

Polytec PT GmbH
Polymere Technologien
plant Maxdorf

Ettlinger Straße 30 76307 Karlsbad Germany Phone +49 (0)7202 706-3500 Bahnhofstraße 1 67133 Maxdorf Germany

info-pt@bostik.com www.polytec-pt.de info-pt@bostik.com www.polytec-pt.de